
4 UARl Research Report No. 23 N65 28398 I 

P IPAOESI 26 "i""' IACCESSION NUMBER)  3 
I 

< 33 
b 
4 
L (NASA CR OR TUX OR A 0  NUMBER) lCATE00RYl , 

ON AXIOMS FOR HETEROGENEOUS CONTINUA 

I 

GPO PRICE $ 

OTS PRICE(S) $ 
by 

A. A. Hayday 
Hard copy (HC) A 
Microfiche (M F) .& 

This work was in part sponsored at the University of Illinois by Project 
SQUID, Office of Naval Research, under Contract Nonr 1858 (25) 

NR-098-038. The work was completed at the University of Alabama 
Research Institute and was supported partially by the National 

Aeronautics and Space Administration Grant NsG-38 1 

UNIVERSITY OF ALABAMA RESEARCH 

Huntsville, Alabama 

N ST TUTE 

May 1965 



Y 

Y 

ON AXIOMS FOR HETEROGENEOUS CONTINUA* 

by 

A, A. Hayday 

* This work was in part sponsored at the University of Illinois by Project SQUID 
which i s  supported by the Office of Naval Research, Department of the Navy, 
under Contract Nonr 1858 (25) NR-098-038; the work was completed at the 
University of Alabama Research Institute under the sponsorship of the National 
Aeronautics and Space Administration partially funded under NsG-38 1 ,  
** 

Associate Professor of Mathematics and Mechanics 
University of Alabama Research Institute, Huntsville, Alabama, U.S.A. 



Summary 

The paper deals with the derivation of general conservation equations for 

heterogeneous continua - substances consisting of several distinct, possibly inter- 

acting constituents. The analysis, resting for the most part on an admissible 

superposition of the diffusive motions on the postulated motion of the mixture, 

i s  based on axioms in integrul form from which the basic differential equations 

are deduced. The treatment i s  a rigorous, direct generalization of the classical 

theory for simple continua. The main results are compared with those of Truesdell 

and found to be in entire agreement /&,&&' 
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1 . Introduction 

From the viewpoint of continuum physics, the behavior of many materials 

i s  we l l  described by the properties of an ideal medium - the simple continuum; 

but this classical representation must be modified and extended in  order that i t  

suffice as a model for materials consisting of several distinct and mutually inter- 

acting constituents. A continuum theory describing such materials i s  called herein 

a heterogeneous continuum theory. In the broadest sense, i t  i s  not restricted to 

any particular state of continuously distributed heterogeneous matter and therefore 

covers, for example, flows of reacting mixtures of gases, liquids containing small 

solid particles in  suspension, and electrically conducting plasmas. 

* 

A general theory for heterogeneous continua was published by C. Truesdell 

[ 1, 21. While rigorous, Truesdell's treatment i s  rather formal. He postulates 

the differential balance equations for the constituents and sums these over al l  

constituents to obtain the equations for the medium as a whole. The summations 

are so performed that each of the resultant equations possesses the same mathe- 

matical form as the corresponding equation for a simple continuum. More recently, 

Kelly [ 3 ]  gave a derivation of Truesdell's results starting from axioms in integral 

form and including electromagnetic effects. Basically, his formalism amounts to 

spatial integration and summation of the equations postulated by Truesdell, a 

certain degree of order being introduced into the summation procedures by what he 

calls a general balance principle stated for volumes fixed in  space, 

, 

. 

* 
We are referring to general equations of balance that, for each particular 

continuum, must be developed and specialized further by including definite 
constitutive equations. This paper, as well as the first three quoted works, deals 
mainly with the derivation of the general balance equations and not the constitutive 
equations. Numerous earlier papers, usually of a more special nature, are not 
quoted herein because they are listed, together with crit ical evaluations, 
in the exhaustive bibliography of 121. 
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This paper, an extension of the author's earlier work [ 4 ] ,  deals with the 

development of a different mathematical model for heterogeneous continua. The 

treatment i s  rigorous, yet simple and direct, and i s  closely related to the classical 

theory for simple continua. It rests for the most part on an admissible superposition 

of the diffusive motions of the components on the postulated motion for the mixture. 

Material properties ascribed to the medium as a whole are used consistently. In 

particular, the main axioms, unlike those in [ 1, 21 and [3 ] ,  are stated in integral 

form in terms of well defined material volumes for the heterogeneous continuum. 

The differential balance equations for the medium as a whole are deduced from 

these axioms and shown to be in agreement with Truesdell's results. The reader, 

i f  he likes, may consider this formulation as an alternate to [ 1 , 21 and in part to 

(31 and also as a generalized analog of the classical theory of one component 

fluid flow. An excellent treatment of the latter i s  due to J. Serrin [SI. 
, 

2. Premises and Kinematical Definitions 

The mathematical description of heterogeneous continua i s  based on 

identifying tangible portions of heterogeneous matter with sets of points in  three- 

dimensional Euclidean space. The motion of the medium as a whole - the motion 

of a mixture - i s  represented herein by a one-to-one continuous transformation of 

the space into itself. The parameter t of this transformation represents time and 

its range i s  -00 < t <a0 where t = 0 specifies an arbitrary init ial  instant. Thus 
* 

the spatial variables x. denote the positions of mixture particles distinguished 

from a l l  others by means of the material variables X. conveniently chosen as the 

positions of mixture particles at t = 0. Hence t may be restricted to 0 < t < 00. 

I 

1 

L 

* 
We use both Cartesian tensor notation and vector notation. Tensor indices appear as 

subscripts and vectors are distinguished from other quantities by bars above a letter. 
The superscripts are devoid of tensorial meaning and denote the components of the 
mixture. A l l  functions appearing herein are assumed to be as many times continuously 
differentiable as required. 
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The Jacobian, J, of the mapping (2.1) i s  such that 

ax. 
1 

0 < J det (K) < 0 6 .  

I 

The terms "moving mixture particle" and moving point in space are synonymous. 

By definition, an arbitrary finite volume V(t) i s  called material i f  i t  moves with 

the mixture; that is,  every point of the bounding material surface S moves according 

to (2.1). 

We wi l l  consider a heterogeneous continuum consisting of say N substances 

and distinguish i t  from a simple (one-component) continuum by the two following 

properties, regarded as explicit hypotheses 
k k 1) There exist functions p 6, t) > 0 such that the mass M 

th 
of the k component* i s  

k M k =  J'p d v .  
V 

k 
I i' 

functions of certain well defined thermodynamic variables. 

These vector fields, called the diffusive (mass) fluxes, 

satisfy the condition 

2). There exist vector fields I, (x t) that are a priori known 

N k  I: J i  (xi, t) = 0. 
k=l 

The total mass of the mixture i s  

N k  
M S  I: M e  

k=l 

(2 4) 

(2 5)  

* 
Hereafter k e { 1 , 2, I. *, N) wi l l  always serve to identify a typical substance 

of  the continuum. 
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t 

We set M = J p dv and thus 
V 

k *  P' 1 P .  
k=l 

k k  
The concentrations of the components are defined as w = p /p. Clearly 

k 
I W  = I .  

and 

The velocities and accelerations of the mixture are defined as 

- a'i I 
I at xi 

- I 
v. = - 

a. = - 
I a x *  i 

(2.7) 

D a 
a I The symbol - 

derivative holding x. fixed. 

i s  henceforth replaced by - and 5 represents the usual 
ot  I at xi 

I 8Vi  
From (2.1), (2.2), (2.6) and (2.7) we obtain ai = at + v, v.,.. A more 

I ' I  
general formula i s  

+ v. F, OF - aF 
D t  at  I i - - -  

where F stands for a scalar or a component of a vector quantity associated with 

the motion. 
k The diffusive velocities v .  , defined as 
I 

k k  
v'r E J ./p , 

I I 
(2 9) 

j - 

i 
are regarded as "carriers" of masses, momenta and energies for the individual 

components relative to the motion (2.1). They brm the apparatus whereby masses, 

momenta, and energies are transported by diffusion into an arbitrary material 

* N 
1 , J'4 J and 

4 E $. While omitting the symbols S and V on integral signs, in the text we 

shall always emphasize our consistent use of material volumes and surhces. 

Henceforth we introduce a more compact notation: 1 s 
k=l V 

S 

. 
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k 
volume V. Scalar products of the v.'s with various forces shall be called work 

rates due to diffusion. With reference to an arbitrary material volume, we state 

the following superposition principle: 

1 

"Diffusive phenomena are superposed (added tensorial ly) on 

the corresponding phenomena associated with the mixture motion." 

This principle forms the basis for the axioms presented in the next section and, 

through their consequences, i s  shown to imply a definite interdependence of the 

mixture motion as a whole and the diffusive motions of the components. 

In addition to the above, we shall frequently make use of the following 

well  knawn theorem 

Transport Theorem - Let V be an arbitrary material volume and 

FG, t) a scalar or vector function of position. Then 

(2.10) 

The proof i s  standard and w i l l  not be given. 

3. Conservation Principles 

The differential equations governing the behavior of the mixture are 

deduced from the following postulates. 

Postulate I :  

The rate of change of mass of the k th 

th  

component of the mixture within 

an arbitrary material volume V equals the sum of i t s  diffusive mass flaw into V 

and the rote of production* of mass of the k 

principle i s  expressed by the statement 

component. This conservation 

D k k - J p dv = -$ J!n.da + J K dv M I I  
(3.1) 

* 
Due to chemical reactions. 
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where n. denotes the unit normal, positive outward, and K k represents the mass 

rate of production per unit volume of the k 
and (3.1) it follows easily that 

th I 

component, Now, from (2.10) 

and since V i s  arbitrary this implies 

Summing (3.2) over al l  components and using (2.4), we obtain 

Theorem I = The total mass M within an arbitrary material 

volume V i s  conserved, 

i f  and only i f  

(3.5) 
k I K  = O .  

k 
Henceforth we shall assume that whenever explicit formulas for the K are given 

their sum always vanishes. The statement (3.4) i s  then a direct consequence of 

(2.4), (3.1) and (3.5). 

The local composition of a heterogeneous medium i s  usually expressed in 

component i s  k th 
terms of the concentrations w The pertinent equation for the k 

Dwk k k + J.,. = K , p D t  I 1  

easily obtained from (3.2) and (3.4). 
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Before we state the axioms expressing conservation of linear momentum 

and energy, we shall define a number of quantities appearing therein. The 

definitions are always consistent with the superposition principle. 

The total linear momentum of an arbitrary muterial volume V i s  

J I: p (v. +vi)dv; from (2.4), (2.9) and p = I: p , i t  follows that the integral 

of the sum of diffusive momenta vanishes; that is, j’ I: p v i  dv 

k k k 

k k  I 

0, and therefore 

k k i I: ‘p (vi +v.)dv=,fpvi  8 dv. 

k This quantity i s  influenced by the direct stress, $ I: t i  ds, and the body force 

J 1 p f i dv, where t denotes the direct component stress and f .  stands for 

the (body) force per unit mass acting on the k 

force f. acting on a unit mass of the mixture i s  defined as f. E I: wk fk , and 

hence J I: p f i  dv = J pfi  dv. 

k k  k k 
I 

th 
component of the mixture. The 

1 1 
k k  I 

Next I we introduce the definitions of several kinetic energies and rates 
4 2  +” I dv; the kinetic 2 

,f I: p I v  I /2 dv. Asan immediatecon- 

= K + KD. The total rates of work 

of work. The total kinetic energy i s  KT 

energies of the mixture motion and the sum of diffusive motions are respectively 

K S J p  171 /2 dv and KD 

sequence of (2.4), (2.9) there follows K 

due to surface and body forces are respectively expressed as 6 I: t , (v, + v ,) do 

and J 1 p f.  (v. + v ,) dv. Parts of the total rates of work enter the balances 

of K D 
motions and the mixture motion separately, for example, 

J l p 

2 k - k 2  

k k T 

I 1  I k k  k 
I I  I 

and K and so it i s  often convenient to write the contributions due to diffusive 

k k  k k k  k J I: p f .  (v. t v i ) d v  =$p.f .v.dv f .v .dv.  
I I  I I  I I 1  

We complete now our set of definitions. The total internal energy of a 
k k  k 

material volume i s  J I: p E dv where E represents the internal energy per 

unit mass of the k th component. Alternately, with E, the internal energy per 
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unit mass of the mixture defined as E E 1 w k k  E , we have J E  p k k  E dv =JpE dv. 

+‘I2 ) dv, having the This quantity i s  a part of the total energy, SI: p (E 

decomposition 
2 + 

A 2  
)dv = J pEdv + K  +KD. k I V + v I  SWE + 2 

The balance of total energy depends in part on the transport of heat into the volume, 
-$ 1 h. k n. do, and on the rate of generation of energy, / Z p k k  Q dv; the latter 

integrals imply that wi th each component there i s  associated a flux of heat h. and 

an energy source Q . With h. 1 h, and Q E t w Q we have the obvious 

alternate expressions 

k I I  

1 k k k k  
1 I 

-$ h, n. do and J pQdv. 
1 1  

Postulate 11: 

The rate of change of total linear momentum of a material volume V equals 

the sum of the inward flux of toto1 linear momentum and the forces acting on the 

volume. This principle may be otherwise expressed as 

(3 7) 
k k k  + $ 1 t . d a  + $  Z p f . d v  , 
I I 

k k  
I 1 1  I 

On the basis of this relationship, previous definitions, Gauss’ theorem 

We adopt now Cauchy’s stress hypothesis, t . = t . (x., n., t), and use it, together 

with (3.7) and the assumption of boundedness of integrands, to obtain the decomposition 

t i  = T.. n.. 

and (2. lo), we write (3.7) in the form 

k k - r  
II i 

k k  Dv. k k k k  I 1 T..,. + 1 (p v i  v.),. - z p  - 0  
II I I I  

s i p =  - 

* k 
1 1  

that many of the results remain valid without this assumption. 
Henceforth we assume that the tensors T.9 are symmetric, but i t  i s  understood 
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and since the volume i s  arbitrary, easily deduce the differential equation 

k k I: t , and writing the corresponding tensor as T.. = I: T.., 
I 1 II !I 

Upon defining t. 

this basic result takes the form 

DK 
From (3.8) we now obtain easily a useful relationship for - 

D t  
Theorem II - The rate of change of K i s  

k k k k  k 6 1 t . v . d a - $  I: p v .v .v .n .da-  $ I T , ,  v.,.dv 
DK 
D t  I I  
- =  

I I l l  I I  1 I 

k k k  k k  + J I: p v.v.v.,. dv + $  I: p fiVi dv, 
I I l l  

(3.10) 

To prove (3. IO), i t  suffices to integrate the product of (3.8) with v. and rearrange 

the result using (2.10) and (3.4). When N = 1 , the medium i s  a simple continuum 

and (3.10) reduces to the well known formula 

I 

DK - = # t. v .ds-  $T.. v.,.dv +$pf.v.dv. 
D t  I I  1 1  I I I I  

Otherwise, 
k 

and J I: p 

k k k  
the general statement (3.10) always contains the terms 4 I:p v .v .v.n. da 

v.v.v.,. dv that express, with respect to the mixture motion, the 
I I l l  k k  

I I l l  

Postulate 111: 

rate of work and dissipation due to diffusive stresses. 

The rate of change of total energy of an arbitrary material volume V 

equals the sum of the total rates of work of surface and body forces, the inward 
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flux of total energy, the inward flux of heat and the total heat generated within 

the volume. This principle may be written as 

r) 

D k k G + v I  k k -k' - 
Dt I I  I 

1 p (E + ~7) dv = $' I: t . (v. + v .)da 

+ S Z p k { ( V i + v . ) d v - $ E p  k k (E k + , 7 ) v i n i d a  I;+vI -k2  k 
I 

(3.11) k k  - 5  1 hkni da + J' I: p Q dv. 

Expanding* the total energy terms and combining the result with (3.10) gives after 

some obvious cancellations, 

* D k k -k2  DK I: p (E + Iv I/Z)dv+-i;jr 

and substitute (3,lO) for - ; furthermore, we use 

We write the left hand side of (3.11) in  the form - 
DK Dt * 

D t  n 

k k l ; + $ l L  k k k k  
) v . n . d a  = $  1 p E v.n. da J E : P ( E +  2 I f  I I  

k - k 2  k k k  k + 4 I: p I v  I /2 v i  n. da + $ Z p  v.v.v.n.da. 
1 I I  ' I  

Note that while the rate of change of total energy equals the sum of the rates of 

change of 

the transport of total energy into the volume by diffusion yields the cross term 

5 I: p v , v v. n. da. From our viewpoint such terms ate manifestations of various 

interoctions among the constituents of a heterogeneous medium. Unfortunately, 

the precise nature of such interactions i s  unknown, 

pEdv, K and K,,, a similar decomposition of the integral expressing 

k k k  
1 1 1 '  
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D k 2  k k k k  E J Z pk (Ek + I v  1/2)dv = f Z T.. v.,.dv - $1 p viv.v.,. dv 
II I I I I I  

k k  k k k  k k A 2  k 
+ $ p  f . v .dv  + $  1: t , v ,  d o -  $ 1: p (E + I v  i /2)v,n,da 

I 1  1 1  I I  

k k k  
-$'Zh,n.da+$Zp Q dv. 

I I  

The above equation, written in terms of volume integrals, takes the form 

D k k 4 2  k k k k  - f T p  (E 
Dt II I I I I  

+Iv 1/2)dv = J Z (T,, - p v.v.)v.,. dv 

k k  -k2 k k k  k k k k k  
I 1 I I  I 1  I 1  

-$ I[h! + p  (E + I v  l /2)v.  - T.. v.1,. dv + J 1 (p Q + p f .v.)dv* 

I t  i s  convenient now to  introduce into this expression the definitions 

- k k I l - k 2  pE* = I: p (E + 2  v I ), 

k k k  = T.. Z p V . V .  
I I  1 1  

T.? - 
' I  

k k k 1 - k 2 k  k k  
I I: [ h .  + p (E + ? I V  I ) v .  - T,.v.I k; I I ' I  I 

k k  k 
pQ* 3 pQ + Z p f iV i  , 

suggested by the natural grouping of terms in the integrals and by the viewpoint 

adopted herein towards diffusive effects. Using (2. lo), there follows 
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and since thevolume i s  arbitrary this implies 

(3.12) 

Equation (3.12) i s  a generalization of the energy equation for simple continua to 
k 

which it reduces whenever v .  0. 
DE 
Dt  

I 

Next, we obtain from (3.12) an expression for p - to be used in the sub- 

sequent discussion on thermodynamics. For this purpose, we define* the set of 

scalars { A } k 

substituting (3.13) into (3.12) yields the required equation 

DE k k  k k k k  PE = T..v.,. + ZT..V.,. (I h. + p E + pQ + F (3.14) , 
1 1  I I ' I  ' I I 

where 

** 
The results (3.14), (3.12), (3.9) are in entire agreement with Truesdell's. 

* 
This i s  necessary because, other than a formal integral of (3,13), no explicit formula 

for D K d D t  i s  available. 

** 
While the derivations differ, they are not entirely unrelated. A somewhat closer 

connection between the two may be established as follows. We suppose that the 
chemical reactions and possible other interactions among the constituents result in 
product ions of  total momentum and total energy, this being expressed by including on 
the right hand sides of the a i 

productions of kth total momentum and kth total energy due to interactions. Because 
I K k  = t Kk = 0, contributions dueto the mixture motion vanish. The remaining 
portions of the integrands may be set equal to zero on the basis of the same sort of 
theorems as in [ 1,2] ,  the latter expressing the requirement that each differential 
equation for the medium as a whole possess the same mathematical structure as the 
corresponding equation for simple continuum. Since this leaves the main results 
unaltered, we have chosen not to pursue this course. 

s (3.7), 3.11) the integr Is SI p [p\ + Ek (v\ + v;)]dv, 
J ' E  p [  ek + t k  (Ek + IV -k + T  73 I /2)] dv; rL pKk, and $, ek denote respectively 
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4, Thermodynamics 

The purpose of this section i s  to join the preceding development with the 

necessary thermodynamical considerations. This i s  done by deriving from postulated 

equations of state for the constituents an equation of state for the medium as a 

whole, by deducing several forms of the Gibbs equation, and by deriving the 

equation expressing the balance of total entropy of a heterogeneous continuum. 

The latter suggests then several candidates for a possible general postulate of 

irreversibility. Our treatment i s  a simpler and somewhat modified version of that 

due to Truesdell [ 1,2 1. The fundamental ideas go back to the classical work of 

J. W. Gibbs. 
* 

k 
We state now the basic assumptions. The main hypothesis i s  that E - the 

specific internal energy of the kth component - i s  influenced by the totality of 

parameters consisting of a l l  partial specific volumes, { v , . . . , v 

v 

sufficient to determine E 

independent from a l l  other parameters, i s  called the kth specific entropy. The set 

{ s , v , . . . , vN} i s  said to constitute the thermodynamic state of the kth component 

and i t s  subset { v 

dynamic state i s  specified by a definite functional relationship 

1 N } where 
k k k l/p , and that these together with one additional scalar parameter s are 

k k independently of time, motion and stress; s , dimensionally 

k 1  

N . . . , v } i s  called the thermodynamic substate. The thermo- 1' 

k k k  1 N 
E = E (s , v , ..., v ) ,  (4.1) 

herein referred to as a caloric equation of  state. It i s  assumed that a l l  such relation- 

ships are differentiable as many times as required and may be inverted to  yield any 

one variable in terms of the remaining ones. Therefore 

k aEk k aEk 

as p=l a? 
dE =k ds + I: - dvP 

* 
The reader i s  referred to [61, (71 and [8 ] .  An exhaustive l i s t  of pertinent papers 

may be found in (21. 
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and since (4.1) i s  valid for any motion (4.2) expresses a general change in the 

state of the kth constituent. The particular change associated with the mixture 

motion i s  given by 

An alternate expression i s  

where 

(4.4) 

i s  the temperature of the kth constituent. 

We come now to the first important result of this section ascertaining under 

what conditions there exists an equation of state for the mixture of  the form 

(4 5 )  
1 N E = E ( s ,  v , ..., v ) 

compatible with the given equations of state (4.1); 

k=l 

i s  called the total specific entropy of the mixture and, as before, 

k k  
E S  1 w E ,  

k-1 

. 

* 
Henceforth we omit the subscripts because it i s  clear from a given functional 

reiationship and i t s  partial derivatives which variables are held fixed. 
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Theorem 1 - A mixture whose constituents have equations of state of the 

form(A1)possesses anequation of state (4.5) i f  and only i f  the local thermodynamic 

states described by s , ..., s , v , .,., v , are subject to the following 

c o d  i t ionst 

1 N 1  N 

1 2  L 1 . L components have the same temperature T = T = . . . T = T, 

2. The concentrations of the remaining N - L components are zero, 
N 

e . .  W = O s  

1 N 

L+2 - - L+l w = w  

The proof i s  simple since, for fixed v , . . , v , a necessary condition 

for 

k k  k dE = 1 w T ds =Tds, 

! 

i 

! 
' .  
, 

k=l 

k aE k 
i s  T = T E - (or the particular w = 0). The reader can easily complete 

the proof. , 
a s  

In practice i t  i s  not so much the equations of state (4.1), (4.5) that are 

used but rather the rate equations typified by (4.4). Such an equation for the 

mixture i s  obtained in a straightforward way from (4.5) and previous hypotheses. 

It suffices to put v 

general change in E and then observe that, for the special change following the 

motion of the mixture, this implies 

k k 
v/w into (4.5), form the differential expressing the 

DE Ds Dv k D w k  - = T s - " -  + Z P F  Dt Dt k-1 

where 

(4 6)  

Equation (4.6) i s  called the Gibbs equation; the coefficients T, n,pkare respectively 

the mixture temperature, total pressure and chemical potential. The latter are now 
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given explicitly in terms of the constituent quantities. We multiply (4.3) with 

p , use previous hypotheses and some rearrangement to obtain 
k 

DE Ds + Dv I: wk aEk 1 1  I--- wk aEk Dwp 1 - - - -  - e T -  
2 p Dt k=l p=l wp a$ k=l  p=l Wp aV D t  D t D t  

k k D w k  + 1 (E - T s ) -  
Dt k=l 

(4.7) 

Equation (4.7) i s  precisely of the form (4.6) provided 

(4 8) 
- wk aEk 

3 p=i aV k=i p=i aV 
T I = -  1 1 - - .  p aEp I: w -p 

k N  k k v  
P P  

k p Z E  - T s  - 

It  i s  important to note that the validity of (4.7) with coefficients (4.8) i s  

not an assumption but a consequence of the caloric equations of state of the con- 

stituents and the condition T = T.  In the special case when E = E (s , v ) we 

have 

k k k k  k 

N k  k k k k k  
n =  1 n , p = E  - T s  + n  v ,  

k=l 

k 
where the partial (or comp0nent)pressures TI are defined as 

The last statement i s  summarized in the following theorem: 
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k k k  k 
Theorem 2 - If  the components satisfy equations of state E = E (s , v ) 

and i f  at each instant of time t at o place x. the component temperatures ore 

identical then there i s  a Gibbs equation such that 
I 

1. The total pressure i s  equal to the sum of the partial pressures, 

2. The chemical potentials are p = E = Ts + 'R v . 
The Gibbs equations discussed thus far require T = T. It i s  worthwhile 

toconsider here a more general Gibbs equation not subject to this requirement, 

namely, one that admits at a place x. , T # T . For this purpose we retain the 

constituent equations of state (4.1) but do not demand an equation of  state for the 

mixture of the form (4.5). At each point xi in space at each instant of time t 

we define o mean temperature T for the mixture os 

k k k k k  

k 

A B  
I 

ry 

k k  t w d s a  N k k k , y  t T w d s  
k=l k=i  

C lear I y , 

N N N k k  
T d s = ? [  1 wkdsk + t s dw }. 

k=l k=l 

Computations similar to those yielding (4.7), (4.8) give now 

k - -  D E - T - - n - +  - Ds Dv I: ,kDw ) 1 -  

Dt D t  Dt D t  k=l 

where 
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N 

and the total pressure n i s  the same as in (4.8). Of course, T i s  not a state 

variable i n  the usual sense and therefore the applicability of the above formulation 

needs further examination. Subsequent discussion i s  always consistent with 

Theorem 1 and no further mention of T i s  made, 
N 

We obtain now the differential equation expressing the local balance 

of total specific entropy s and from i t  deduce an integral equation for the balance 

of total entropy J psdv; guided by the procedures established in the theory of 

simple continua we suggest then certain inequalities regarded as possible general 

postulates of thermodynamic irteversibi lity. 

Equations (3.14) and (4.6) are rewritten as 

and 

where 

Q E S p Q - p  I: ( A  k + K  k 1 - k  21' 1 3 - ( h i  + 1 p k k k  E v i ) t i  

k=l k=l 

and 

k h k  Dv 
P p p  I: lJ F - v E  f 

k=l 

(4.7) 
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QE and P are called* respectively the external power, the external 
DE 

The terms PE, 
non-mechanical supply of energy and the inner power. Eliminating p - between 

Dt  
(4,7) and (4.8 ) gives us the equation for the production of total specific entropy, 

I 

Ds 
Dt PT - = PE - PI + QE 

that may be expressed as 

k k k  h.+ I: p E v. 
1 k k k  I I k=i 

),.- - T,. (h. + I: p E v. )  
Ds ’E ‘i 

I k=l P & = r T - (  T I T 2  I I  

L ’  . k=l + . (4.9) 
T 

We integrate (4.9), use the transport theorem and after some obvious 

rearrangement obtain the corresponding integral equation for the balance of total 

entropy I 

k k k  (h, + 1 p E v.) 
I I 

k=l n. da + J’ ( A  + 9)  dv, (4.10) 
D - J ’ p ~ d v  a = $  Dt T I 

where 
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The theory of simple continua suggests* that we may set 

* 
We follow the treatment of Truesdell [ 2  1. For a simple continuum which obeys 

k a caloric equation of state E = E(s, a ), k = 1 , . . . I K we have 
dE ds 

Px = P T dt + p, 

where P 

tensions. Eliminating p - between the aboveequation and the equation 

p 1 t k -; dak the quantities tk = aE are called thermodynamic 1 
k=l dt dE -9 

d t  .L 

where P B T.. Dii, QE is pQ - hi , , gives 
E li 

Integration of 

p T ; j i - = P E - P i  ds + Q E  

leads to 

h. 

T I  - d J psdv  =-$ 2 n. do + 
dt ( A  + 9 ) d v  

where 
hi,. 

T 
I 1  T A e (PE - Pi) - - 

On the basis of physical arguments we have 

- Pi > 0 when Q = 0 and T = const, pE - 
and 

h.T,. > 0 when Q = 0 and PE - Pi = 0. 

Therefore TA > O and for T > O the above expression i s  equivalent to 
1 I -  

- 

The last statement i s  adopted as a postulate of irreversibility. 
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and adopt the equivalent inequality 

k k k  
h.+ 1 p E v ,  
I I 

1 n. da + e dv (4.12) D k=l - J ps dv > - $ I  Dt - T I T 

as a general postulate of irreversibility. 

It must be ernphasized that TA > 0, and hence (4.12) are merely suggested - 
as possible hypotheses. Other candidates for a "general postulate of irreversibility" 

are easily obtained because the terms which enter A are not uniquely defined. 

For example, we may write (4.9) in the form 

I I 

PE"[ Ds k=1 T I I .  I +?+A' 

where 

(4.13) 

k k 1 A 2  k k k  k 
- p  1 { A  + K (TIV I + p ) +  p v i  (4.14) 

k=l 

The assumption 

i s  equivalent to 

k k  k k  
p (E - p ) v i  

T I 

h. + 

e dv. (4.15) In. da i J' T 
k=l I D - J p s d v  > -  $ [  Dt I 
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The inequality TA' - > 0 i s  the same as Truesdell's [ 1 , 2 )  and clearly different from 

TA - > 0. Of coune, this difference i s  also reflected in the corresponding integral 

statements (4.15) and (4.11). We may, i f  we wish, construct sti l l  other inequalities, 

group the thermodynamic variables into "forces" and "fluxes" and obtain agreement 

with the results given by various writers on "irreversible thermodynamics." (For 

example, in  [ 4 ] ,  a A i s  used which leads to the results of S. R. De Groot [ O ]  and 

H. A. Toelhoeck and S. R. De Groot [ lo] ,  proper interpretation of terms being 

made where necessary.) Writers on that subject go one step further and require that 

partial sums occurring in a particular A be separately non-negative. The arguments 

advanced for the support of such steps do not appear to us very convincing.* What 

i s  fundamentally lacking i s  the knowledge of the appropriate group of transformations 

of the thermodynamic variables and the invariance which we are to require. I t  

appears therefore that further progress towards a rigorous theory of thermo-mechonics 

must wait until such time when this question i s  settled in  sufficient generality. 

* 
A general critical evaluation of "irreversible thermodynamics" may be found in 

[ 1 1. : An illuminating critique directed at the well known reciprocal relations of 
Onsager was given by D .  6. Coleman and C. Truedell [ 11 1 .  For a rigorous 
modern work on classical thermastatics the reader i s  referred to the work of D. 8. 
Colemun and W. Noll [ 121. 



References 

. 

1 . Truesdell, C. , "Sulle Basi della Termomeccanica," Accademia Dei Lincei, 

At t i  Rendiconti d i  Science Fisiche, Matematiche e Naturali, (8), 22, 

33-38, 158-166, (1957). 

2. Truesdell, C. and R. Toupin, "The Classical Field Theories," Handbuch 

der Physik lli/i, Springer Verlag, Berlin, (1960). 

3. Kelly, P. D., "A Reacting Continuum," int. Journal Engng. Sci., Vol. 2, 

pp . 129- 153, Pergamon Press , (1 964). 

4. Hayday, A. A. , "Governing Equations for Multicomponent Fluid Continua 

With Chemical Reactions," University of Illinois, Project Squid Rep. Nonr. 

1858 (25) Nr-098-038, (1962). 

5 .  Serrin, J. "Mathematical Principles of Classical Fluid Mechanics," 

Handbuch der Physik, Bd. Vll l/ l , Springer Verlag, Berlin, (1959). 

6. Gibbs, J. W., "Graphical Methods in the Thermodynamics of Fluids," 

Trans. Connecticut Acad . 2 , 309-342, (1 873). 

Gibbs, J. W., "A Method of Geometrical Representation of the Thermodynamic 

Properties by Means of Surfaces," Trans. Connecticut Acad. 2, 382-404, 

(1873). 

Gibbs, J. W., "On the Equilibrium of Heterogeneous Substances," Trans. 

Connecticut Acad. 3, (1875-1878), 108-248, 343-524. 

7. 

8. 

9. De Groot, S. R. "Thermodynamics of Irreversible Processes," North-Holland 

Publishing Company, Amsterdam, (1958). 

10. Tolhoeck, H. A., and De Groot, S. R., "A Discussion of the First Law of 

Thermodynamics for Open Systems," Physica, Vol. 18, No. 10, October 

1952, 

11. Coleman, D. B. and Truesdell, C., "On the Reciprocal Relations of Onsager," 

Journal of Chemical Physics, Vol. 33, No. 1, July 1960. 

12. Coleman, D. 8. and Noll, W., "On the Thermostatics of Continuous Media," 

Archive for Rational Mechanics and Analysis, Vol. 4, No. 2, 1959. 


